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Abstract

The Global Precipitation Mission, a satellite project under consideration as a follow-on
to the Tropical Rainfall Measuring Mission (TRMM) by the National Aeronautiés and Space
Agency (NASA) in the United States, the National Space Development Agency (NASDA) in
Japan, and other international partners, comprises an improved TRMM-like satellite and a
constellation of 8 satellites carrying passive microwave radiometers to provide global rainfall
measurements at 3-hour intervals. The success of this concept relies on the merits of rainfall
estimates derived from passive microwave radiometers. This article offers a proof-of-concept
demonstration of the benefits of using rainfall and total precipitable water (TPW) information
derived from such instruments in global data assimilation with observations from the TRMM
Microwave Imager (TMI) and 2 Special Sensor Microwave/Imager (SSM/I) instruments.

Global analyses that optimally combine observations from diverse sources with physical
models of atmospheric and land processes can provide a comprehensive description of the climate
systems. Currently, such data analyses contain significant errors in primary hydrological fields
such as precipitation and evaporation, especially in the tropics. We show that assimilating the 6-h
averaged TMI and SSM/I surface rainrate and TPW retrievals improves not only the hydrological
cycle but also key climate parameters such as clouds, radiation, and the upper tropospheric
moisture in the analysis produced by the Goddard Earth Observing System (GEOS) Data
Assimilation System, as verified against radiation measurements by the Clouds and the Earth’s
Radiant Energy System (CERES) instrument and brightness temperature observations by the
TIROS Operational Vertical Sounder (TOVS) instruments.

Typically, rainfall assimilation improves clouds and radiation in areas of active
convection, as well as the latent heating and large-scale motions in the tropics, while TPW
assimilation leads to reduced moisture biases and improved radiative fluxes in clear-sky regions.
Ensemble forecasts initialized with analyses that incorporate TMI and SSM/I rainfall and TPW
data also yield better short-range predictions of geopotential heights, winds, and precipitation in
the tropics. This study offers a compelling illustration of the potential of using rainfall and TPW
information derived from passive microwave instruments to significantly improve the quality of

4-dimensional global datasets for climate analysis and weather forecasting applications.

2



1. Introduction

Understanding the Earth’s climate and how it responds to climate perturbations relies on
what we know about how atmospheric moisture, clouds, latent heating, and the large-scale
circulation vary with changing climatic conditions. The physical process that links these key
climate elements is precipitation, which directly affects the generation of clouds and large-scale
motions and thus indirectly influences the distribution of moisture and the greenhouse warming
in the earth’s atmosphere. A quantitative understanding of these precipitation-related processes
and their dependence on the atmospheric state is crucial to developing the capability to model
and predict climate change with confidence. The present-day knowledge of rainfall distribution
and variability is very limited, especially over the oceans and in the tropics. Space-borne rainfall
sensors are essential tools for advancing our understanding of the earth’s water and energy cycles.

The Tropical Rainfall Measuring Mission (TRMM) is a joint satellite project between the
National Aeronautics and Space Agency (NASA) of the United States and the National Space
Development Agency (NASDA) of Japan. TRMM was designed to measure rainfall in the tropics
and subtropics using a precipitation radar (PR) and the TRMM Microwave Imager (TMI)
(TRMM 1996). Coincident measurements by the PR and TMI provide cross-validation to improve
the accuracy of rainrate estimation and physical interpretations of radiometer data. The TRMM
satellite was launched into a non-sun-synchronous orbit of inclination of 35° on Thanksgiving
Day in 1997. The TMI is similar in design to the Special Sensor Microwave/Imager (SSM/T)
instrument but with an additional 10.65 GHz channel and a slightly modified water vapor
channel. The TMI rainfall and total precipitable water (TPW) observations may be combined with
similar retrievals derived from the SSM/I instruments aboard the sun-synchronous, polar-orbiting
satellites operated by the Defense Meteorological Satellite Program (DMSP) to improve the
spatial and temporal coverage and reduce sampling errors. But the combined TMI and the
present-day SSM/I observations do not fully capture the rapid temporal and spatial variations of
the precipitation process. Currently in the planning stage is a Global Precipitation Mission
(GPM), a multi-national satellite project based on an improved TRMM-like satellite and a
constellation of 8 satellites carrying passive microwave radiometers to provide global rainfall

coverage (75°S to 75°N) at 3-hour intervals. The success of this GPM concept relies upon the
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merits of precipitation estimates derived from passive microwave radiometers.

In this proof-of-concept study we seek to demonstrate the benefits of using rainfall and
TPW retrievals derived from passive microwave instruments in global data assimilation, even
with the limited coverage afforded by three satellites. Four-dimensional (4D) global data
assimilation that optimally combines observations from diverse sources with physical models of
the earth system aims to provide time-continuous, physically-consistent, gridded datasets useful
for studying the interactions between the hydrological cycle, atmospheric dynamics, and climate
variability. To do so, the assimilation must be quantitatively accurate in depicting the
precipitation intensity and variability since many key climate parameters such as clouds and
radiation are directly affected by the precipitation process. At the present time, the utility of
global reanalyses produced using fixed assimilation systems is limited by significant errors in the
primary hydrological fields such as precipitation, evaporation, especially in the tropics, where
conventional observations are sparse (WCRP 1998, Newman et al. 2000).

Operational centers currently do not use precipitation data to produce forecasts or analysis
products. However, there have been abundant studies showing that assimilation of satellite-based
rainfall estimates can improve numerical weather prediction and data analysis (e.g., Krishnamurti
et al. 1984, 1991, 1993; Donner 1988; Puri and Miller 1990; Turpeinen et al. 1990; Kasahara et
al. 1994, Zupanski and Mesinger 1995, Treadon 1996, Tsuyuki 1996a, 1996b, 1997). Most
investigations focused on using precipitation data to improve short-range forecasts and the first-
guess fields used in data analyses. But, in the presence of systematic errors in the forecast model,
forecast improvements may not be indicative of the extent of the improvements that can be
achieved in the time-averaged assimilation fields or in terms of the quality of reanalyses as 4D
climate datasets. In two separate studies - one using SSM/I-derived rainfall and TPW retrievals
available prior to the TRMM launch and the other using TMI data, Hou et al. (2000a, 2000Db)
showed that assimilating the 6-h averaged tropical rainfall and TPW retrievals from these
instruments improves not only short-range forecasts but is even more effective in reducing
systematic errors in the hydrological cycle and key climate parameters such as clouds and
atmospheric radiation in the assimilated dataset produced by the Goddard Earth Observing
System (GEOS) Data Assimilation System (DAS). These studies show that physically-based

rainfall estimates derived from microwave instruments, despite some uncertainty in the retrieved
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intensity and the limited observations available in a 6-h analysis window, do provide valuable
information that can be used to good advantage in data assimilation.

In this article we show the benefits of increased data coverage in assimilating the
combined rainfall and TPW retrievals from the TMI and 2 SSM/I instruments aboard the DMSP
F13 and F14 satellites. The work demonstrates the potential of using these data types to improve
forecasts and generate analyses capable of providing quantitatively accurate descriptions of
rainfall and latent heating variations for studying the role of the global water cycle in climate.
In Sec. 2, we discuss the need for better precipitation analyses and more robust metrics for
assessing the consequence of inaccurate rainfall in global analyses. Section 3 describes the
precipitation and TPW retrieval products used in the study. Section 4 describes the rainfall/ TPW
assimilation algorithm and experiments. Section 5 analyzes the impact of rainfall/TPW
assimilation on the time-averaged fields in the GEOS analysis. Section 6 discusses the impact
on short-range forecasts. Section 7 summarizes the main findings and discusses future

developments.
2. Background

Global reanalyses currently yield precipitation estimates that differ quantitatively from
each other and from observation-based estimates such as the combined satellite-gauge rainrates
from the Global Precipitation Climatology Project (GPCP) (Adler et al. 1996, Huffman et al.
1997) or the combined rainrates derived from the TRMM and geostationary satellites (Sorooshian
et al. 1999). The discrepancies are especially pronounced in the tropics, where the conventional
observation network is sparse and rainfall analyses are typically model-generated quantities
sensitive to the physical parameterization scheme employed by the assimilation system. However,
the present-day rainfall observations also suffer from uncertainties in retrieval algorithms and
inadequate sampling. They provide but an estimate of the truth. The lack of definitive rainrate
estimates has hindered efforts to quantify precipitation errors in global analyses and obscured the
penalty for incurring such errors. To make Iﬁrégress, we need to establish, if possible, that the
observed precipitation, though imperfect, is, in fact, more accurate than the model-generated

estimates. We also need to make use of independent observations with higher accuracies to
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quantify the errors in assimilated data associated with precipitation errors.

Based on physical principles and observations, we know that many key climate parameters
such as clouds and radiation are directly linked to precipitation processes. For instance, satellite
observations of the 1987-88 El Nifio Southern Oscillation (ENSO) event show that the change
in the July-mean GPCP precipitation in the tropics is spatially correlated (with coefficients greater
than 0.7) with changes in the high-cloud fraction from the International Satellite Cloud
Climatology Project (ISCCP) and the top-of-the-atmosphere (TOA) radiative fluxes from the
Earth Radiation Budget Experiment (ERBE) (see TRMM Data Assimilation at NASA Goddard
2000). Regions of enhanced convection are associated with increased cloud cover, less shortwave
heating and less outgoing longwave radiation (OLR). The close links between these fields suggest
that radiation measurements from space-borne instruments can provide an indirect but effective
means for estimating precipitation errors in global analyses, given that uncertainties in radiation
measurements are generally much less than that in satellite-based precipitation estimates.

The metrics we use in this study to assess the impact of rainfall/TPW assimilation on the
quality of the GEOS analysis consist of: (i) evaluating the OLR and outgoing shortwave radiation
(OSR) from the assimilation against measurements by the Clouds and the Earth’s Radiant Energy
System (CERES) instrument aboard the TRMM satellite, and (ii) comparing the computed
synthetic brightness temperatures for TIROS Operational Vertical Sounder (TOVS) spectral
channels that are sensitive to moisture with TOVS observations. The CERES/TRMM and TOVS
observations can both serve as independent data for verification since neither was assimilated in
the GEOS DAS. In terms of the monthly-mean tropical precipitation, current reanalyses all have
order-one discrepancies from the combined satellite-gauge GPCP estimate (see TRMM Data
Assimilation at NASA Goddard 2000). These discrepancies are typically of the size as the
signals. In Sec. 5 we show that as we assimilate the TMI and SSM/I rainrates and TPW data to
bring the tropical precipitation in the GEOS analysis into better quantitative agreement with the
GPCP estimate, errors in the TOA radiati?e fluxes w.r.t. the CERES measurements become
substantially reduced. This indicates that the satellite-based precipitation estimates are more
consistent with the CERES/TRMM radiation measurements than the predominantly model-

generated rainfall analysis without the benefit of satellite precipitation data.



3. TMI and SSM/I-Derived Precipitation and TPW Retrievals

a. GPROF TMI and SSM/I precipitation retrievals

The surface precipitation data used in this study are physical retrievals from TMI and
SSM/I radiance measurements using the Goddard Profiling (GPROF) Algorithm, which derives
rainrates and precipitation vertical structure from microwave radiometer and/or radar
measurements (Kummerow et al. 1996, Olson et al. 1996) using a Bayesian technique similar to
the algorithms developed by Pierdicca et al. (1996) and Haddad et al. (1997). The GPROF
scheme uses a database of simulated precipitation vertical profiles and the associated microwave
radiances generated by cloud-resolving model coupled to a radiative transfer code. This database
serves as a "reference library” to which actual sensor-observed radiances can be compared. Given
a set of multichannel radiance observations from a particular sensor, the entire library of
simulated radiances is scanned; the "retrieved” profile is a composite using profiles stored in
database which correspond to simulated radiances consistent with the observed radiances.

The TMI and SSM/I rain estimates are derived from essentially the same algorithm, but
modified for the different channel selection and resolution of the two instruments. Because the
TMI has greater than twice the spatial resolution of the SSM/I, rain estimates from TMI exhibit
a greater dynamic range than those from SSM/I; however, space-time average estimates from
SSM/I and TMI are usually within about 10%. Comparison of zonally-averaged monthly-mean
rainrates from SSM/I (DMSP F13 and FI4) and TMI at 2.5° latitude resolution shows that the
TMI and SSMI/I rainrates are generally very close, with the peak rainrates associated with the
Inter-Tropical Convergence Zone differing by at most 10%, despite the different diurnal sampling
of the SSM/I and TMI over a month. For assimilation into the GEOS DAS, the single-footprint,
instantaneous GPROF TMI and SSM/I surface rainrates are horizontally averaged to 2° latitude
by 2.5° longitude grids, then time-averaged over 6 hours centered at analysis times (0000, 0600,
1200, 1800 UTC).

The random error of each GPROF-retrieved rainrate may be estimated by evaluating the
local variance of rainrates in the model database about the retrieved rainrate (Olson et al. 1996).

According to this method, the random error of single-footprint, instantaneous rainfall rates is
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estimated to be ~100% of the retrieved rainrate. But the instantaneous gridded rainrates have
relatively low random error since the pixels completely cover a 2° x 2.5° gridbox in a full-view
overpass. Over each 2° x 2.5° gridbox, approximately 1000 single-footprint TMI estimates are
used to compute the area-average, instantaneous rainrate. Following the analysis of Bell et al.
(1990), the corresponding random error of the gridbox-averaged TMI rainrate is about 20%,
without accounting for possible inte-footprint correlations of errors. Undersampling of the
time-average rainrate over each 6-h analysis interval contributes additional error, approximately
20-60%, depending upon the number of TMI overpasses within the interval. One complication
in this estimate is that the relative (percent) random error varies roughly as the inverse square
root of the rainrate, so that estimates of relative random errors significantly worse in light rain
areas, but better in heavy rain areas (Huffman 1997).

The global bias is not yet established for GPROF rainfall estimates since most regions
lack the necessary validation data and no statistical model has been developed to estimate bias
from other parameters. A recent intercomparison of TMI GPROF and coincident space-borne
Precipitation Radar estimates of rainrate suggests biases on the order of 30% over land and ocean
in terms of the annual mean (Kummerow et al. 2000). In this study we assimilate the 6-h gridded
TMI and SSM/I surface rainrates between 30°S and 30°N over both the oceans and land.
Although microwave-based rainfall estimates tend to be less accurate over land, our results will
show that assimilating the GPROF rainrates over land greatly improves precipitation over

continents w.r.t. the gauge-based GPCP estimates.

b. Wentz retrievals of total precipitable water

The TPW data are retrievals from TMI and SSM/I observations over oceans using
essentially the same algorithms (Wentz 1997), except for adjustments to account for small
differences in GHz between the TMI and SSM/I channels and the TMI water vapor being
measured at 21 GHz rather than 22.235 GHz as in SSM/I. The TMI and SSM/I TPW data are
available online from the Remote Sensing System (RSS 2000) in the form of maps of ascending
and descending orbit segments at a pixel resolution of 25 km. The rms accuracy of the SSM/I

TPW retrieval is about 1 mm, with the accuracy of the TMI TPW retrieval expected to be
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comparable or better. These high-resolution data with good quality flags are then processed to

produce 6-hour average 2° x 2.5° gridded TPW data for ingestion into the GEOS DAS.

4. Assimilation Methodology and Experiments

The algorithm we use to assimilate surface rainfall and TPW retrievals in the GEOS DAS
is a variational procedure based on a 6-h time integration of a column version of the GEOS moist
physics with dynamical and other physical tendencies prescribed from a preliminary 3-h
assimilation using the full GEOS DAS with conventional observations. The general procedure
modifies vertical moisture and temperature profiles within observational and model uncertainties
to minimize the least-square differences between the observed TPW and rainrates and those
produced by the column model over the 6-h analysis window. The minimization yields constant
moisture and temperature analysis tendencies, which are applied as additional forcing within the
Incremental Analysis Update (IAU) framework of the GEOS DAS in the final 6-h assimilation
cycle. Dynamic consistency is achieved through model integration during the assimilation cycle.
Details of this “1+1” space-time dimension rainfall/TPW assimilation procedure and the basic
features of the GEOS DAS are described in Hou et al. (2000a), with further improvements
described in Hou et al. (2000b).

This 1+1D assimilation procedure, in its generalization to four dimensions, is related to
the standard 4D variational assimilation but uses analysis increments instead of initial conditions
as the control variable. In doing so, it effectively imposes the forecast model as a weak constraint
in a manner similar to the variational continuous assimilation techniques (Derber 1989, Zupanski
1997). However, conceptually, the 1+1D scheme differs from most existing rainfall assimilation
procedures in one important aspect - that it assimilates the time-averaged instead of instantaneous
rainrates. The physical rationale is that the parameterized convection with implicit quasi-
equilibrium assumptions is more consistent with a rainfall generation process that senses the
atmospheric sounding over convective time scales of a few hours rather than instantaneous
profiles. In practice, there is not sufficient rainfall observation to resolve the convective life
cycles in the tropics, in the current implementation we use the 6-h analysis window for the

averaging time as with all other data types used in the GEOS DAS.
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An optimal use of TMI and SSMI rainfall and TPW observations in data assimilation
requires detailed knowledge of observation and forecast model errors, which are both areas of
active investigation. For a simple demonstration of the benefits of using these observations in
assimilation, we will present results from a sub-optimal application of these data without using
error specifications, as done in Hou et al. (2000b). The simplifying assumptions are: (i) the
observed rainfall and TPW estimates are much more reliable than model-generated estimates, (ii)
uncertainties in the moisture analysis are much larger than and uncorrelated with errors in the
temperature field, and (iii) the moisture analysis increment has a prescribed vertically-decaying
structure that mimics the Jacobian of the 6-h mean precipitation w.r.t. moisture perturbations and
an amplitude constrained not to exceed the 6-h forecast error std dev against radiosonde data at
any given level (see Hou, 2000b, for details). Under these conditions the general 1+1D scheme
reduces to a two-parameter estimation problem to accommodate the 2 pieces of information
provided by precipitation and TPW observations. This simplified 1+1D scheme shares a number
of key assumptions with the physical initialization scheme (Krishnamurti et al. 1991, 1993) but
differs in one important respect - it is implemented in the GEOS DAS to directly constrain the
time-average rainrate and TPW over a 6-h analysis window, whereas physical initialization is
typically used to improve the first guess by nudging the precipitation in the previous analysis
cycle (Treadon 1996).

We performed a series of parallel assimilation experiments for two periods: one from I
December 1997 to 31 January 1998, and the other from 1 June to 30 June 1998. The control is
a standard GEOS assimilation with conventional observations that extends from 1 December 1997
through 30 June 1998. In four rainfall/TPW experiments we assimilated in each case, in addition
to conventional observations, either the 6-h averaged TMI rainrates (TMI PCP assimilation), or
TMI rainrates and TPW (TMI PCP+TPW assimilation), or TMI and SSM/T rainrates (TMI+SSMI
PCP assimilation), or TMI and SSMI/I rainrates and TPW (TMI+SSMI PCP+TPW assimilation).
Results from the TMI PCP and TMI PCP+TPW experiments have been reported separately in
Hou et al. (2000b). The present article focuses on the two experiments using both TMI and

SSM/I observations.
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5. Impact on Time-Mean Fields

a. Surface precipitation

The impact of assimilating the 6-h averaged TMI and SSM/I rainrates on the GEOS
precipitation field is illustrated in Fig. 1 for 0000 UTC on 23 January 1998. Figure la shows the
combined 6-h, 2° x 2.5° gridded GPROF rainrates derived from the TMI and DMSP F13 and F14
SSM/I instruments. At this temporal and spatial resolution, there is some overlap between
observations from the polar-orbiting DMSP satellites and the TRMM satellite at 35° orbit
inclination. Errors in the assimilated tropical rainrates in the GEOS control, TMI+SSMI PCP
assimilation, and TMI+SSMI PCP+TPW assimilation are shown in Figs. 1b, lc, and 1d,
respectively. Given at the top of each panel are the anomaly pattern correlation (AC), bias, and
error std dev w.r.t. the combined TMI and SSM/I estimates, with the percentage changes relative
to the GEOS control given in parentheses. (Note: the anomaly correlation refers to pattern
correlation with the tropical mean removed.)

The statistics in Fig. 1 serve only as an illustration, as there is considerable variability in
these 6-h error statsitcis. Typically, rainfall assimilation increases the pattern correlation from
around 0.2 to 0.45-0.6 and reduces the error std dev by 15-20%. The addition of TPW data
further increases the correlation to 0.6-0.7 and reduces std dev by 20-30% relative to the control.

The 1+1D assimilation algorithm is more effective in reducing the precipitation intensity
than enhancing it in the GEOS DAS, leading to the negative tropical-mean biases in Figs. Ic and
1d, even though the errors are reduced locally. A plausible explanation for this asymmetry is that
enhancing precipitation requires moistening of the lower troposphere, yet the high relative
humidity in the tropical boundary layer limits, through saturation, the extent to which moisture
analysis increments can moisten the low levels, while permitting a greater degree of drying to
reduce precipitation.

The impact of rainfall and TPW assimilation on the monthly-mean tropical precipitation
is summarized in Table 1 for January and June 1998, as verified against the gridded GPCP
monthly-mean satellite-gauge estimate produced by Huffman et al. (1997). Results show that

assimilating TMI and SSM/T rainrates increases the anomaly correlation from the 0.60-0.65 range
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to 0.85-0.89, and reduces the error std dev by 41-48%. Figure 2 shows the improved precipitation
fields for January 1998. Although rainrates derived from microwave channels tend to be less
accurate over land than over oceans, Fig. 2c shows that assimilating the GPROF rainrates
improves precipitation not only over oceans but over land as well. Figure 2d shows that using
TPW data in conjunction with rainrate estimates yields further improvements. Similar results in
terms of the overall impact of PCP+TPW assimilation for June 1998 is shown in the top right

panel of Fig. 4.
b. Total precipitable water

The monthly-mean spatial statistics in Table 2 show that the 1+1D scheme is very
effective in reducing errors in the assimilated TPW field. It virtually eliminates the monthly-mean
spatial bias and reduces the error std dev by 75-80%. Assimilating TMI and SSMY/I rainrates
without TPW data also has a positive impact on TPW, mainly in reducing the tropical-mean bias.
The improvements in the assimilated tropical TPW from PCP+TPW assimilation is shown in Fig.
4 (upper middle panels) for June 1998 using the combined gridded TMI+SSM/I Wentz retrievals

as verification.
C. Verification against CERES/TRMM top-of-the-atmosphere radiation measurements

The TOA radiative flux measurements used in this study are the CERES/TRMM ERBE-
like ES-4 2.5° x 2.5° gridded daily products interpolated onto the 2° x 2.5° GEOS model grids.
For the tropics, the monthly-averaged bias is estimated to be £1.5 Wm? for longwave (LW)
fluxes and +3 Wm? for shortwave (SW) fluxes, and the std dev is less than 3 Wm? for LW and
8.5 Wm? for SW (CERES/TRMM 1998). The GEOS DAS does not, at the present time,
assimilate these observations, which may therefore be used as independent data to evaluate the
impact of rainfall/TPW assimilation on the analysis. The bulk of the comparison of the analysis
with CERES/TRMM observations will focus on January and June 1998.

Table 3 summarizes for January and June 1998 the spatial error statistics in OLR, OSR,

and the total outgoing radiation (TOR = OLR+OSR) relative to CERES products over all tropical
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locations where the month-mean rainfall has been modified by PCP+TPW assimilation by more
than 1 mm d". Results show that both OLR and OSR are significantly improved as a result of
the improved precipitation: with tropical bias reductions in the range of 71-92%, and the std dev
reductions between 42 and 48%. An example of these improvements is shown in Fig. 3 for the
tropical OLR for January 1998. The error reductions in the TOR are somewhat less but still
substantial. Table 3¢ shows bias reductions of 20-27% and std dev reductions of 17%, reflecting
partial cancellations between OLR and OSR errors, which is not surprising as much of these
errors are cloud-related, as we will show later in this section.

The benefits of rainfall/TPW assimilation is not limited to raining regions. Table 4
summarizes the improvements in OLR, OSR, and TOR averaged over the tropics for January and
June 1998. The improved tropical OLR and OSR fields for June 1998 are shown in the two lower
panels in Fig. 4. Assimilating TMI and SSM/I rainrates and TPW yields reductions in the error
std dev of 41-44%, 30-39%, and 11-17% for OLR, OSR, and TOR, respectively. It also reduces
the tropical-mean bias by 71-76% in OSR and 18-27% in TOR. The apparent increase in the
tropical-mean bias in OLR is an artifact of the virtual elimination of the predominantly negative
OLR bias over precipitating areas (see Table 3a and Fig. 3), leaving the tropical-mean bias being
dominated by the positive biases in rain-free regions. The positive OLR bias in rain-free areas
reflects a dry humidity bias in the lower troposphere, which is diminished by assimilating TPW
observations, as evident in the comparison of the clear-sky OLR against CERES measurements
in Table 5. About half of the 10 Wm? bias in the clear-sky OLR can be traced to the use of a
high surface emissivity value in this version of the GEOS DAS, which has since been corrected
in later versions. A smaller bias in the control would mean greater fractional improvements. The
tropical bias in the clear-sky OSR is small in the GEOS control - about 1.0 Wm™ for January and
0.7 Wm? for June (not shown) - well within observation uncertainty; rainfall/ TPW assimilation
has no significant impact on either its bias or error std dev.

Much of the errors in the GEOS OLR and OSR in the tropics are dominated by errors in
clouds, the foregoing results suggest that assimilating precipitation and TPW data significantly
improves the representation of clouds and cloud radiative effects in the analysis. This is
confirmed by comparing the “cloud radiative forcing” (the difference between the clear-sky

radiation and all-sky radiation) with CERES/TRMM estimates. The statistics in Table 6 show
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large reductions in tropical-mean biases and std dev’s in LW, SW, and net cloud forcing for
January and June 1998. These improvements are dramatic, as illustrated in Fig. 5 for the tropical
LW cloud radiative forcing. Clearly, improvements in precipitation has a direct impact on the
distribution of clouds, which, in turn, improves the OLR and OSR. In fact, the spatial pattern
correlations between the change in the January-mean tropical precipitation due to PCP+TPW
assimilation and those in OLR and OSR (not shown) are -0.70 and 0.70, respectively. Note,
however, that there is little correlation between the changes in precipitation and TOR due to large
cancellations between the LW and SW effects of clouds.

One benefit of assimilating rainfall and TPW data is that they reduce state-dependent
systematic errors in assimilation products. An example is given in Fig. 6, which compares the
tropical OLR error std dev’s in the GEOS control with those in the PCP+TPW assimilation for
three averaging periods of 1, 5, and 30 days. The offsets between the control and PCP+TPW
assimilation results are nearly constant in all three cases - ranging from 8.2 to 9.5 Wm™. Since
the tropical mean is removed from the error std dev analysis, they likely represent reductions of °
spatially-varying, state-dependent systematic errors. Systematic error reduction is important in
data assimilation since analysis algorithms typically assume unbiased observations and model
forecasts, even though systematic errors in the forecasting model and analyses can be of the same
order as the random components. Constraining the assimilation fields using precipitation and
TPW data can compensate for systematic model errors (see Sec. 6¢) and promote internal
consistency of assimilation schemes.

The improvements in the outgoing radiation fluxes presented in this section derive mostly
from the better spatial pattern information in the TMI and SSM/T precipitation data and are not
sensitive to the intensity of the retrieved rainrates, as shown by the sensitivity experiments

described in Hou et al. (2000a).
d. Impact on tropical latent heating, large-scale motions, and upper-tropospheric humidity

A primary goal of assimilating tropical precipitation data is to improve the 4D structure
of latent heating and the associated large-scale circulation. A better latent heating distribution

should improve not only the clouds and vertical velocities in raining areas but also the subsidence
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in surrounding regions. Figure 7 shows that the time-mean changes in the divergent wind at 200
hPa, the omega vertical velocity at 500 hPa, and the upper tropospheric humidity (UTH) resulting
from rainfall and TPW assimilation in January 1998 are tightly linked with the changes in
precipitation. The spatial pattern correlation between the January-mean precipitation anomaly
(Fig. 7a) and the vertical velocity anomaly at 500 hPa (Fig. 7b) is -0.89, and that between the
specific humidity anomaly at 400 hPa (Fig. 7c) and the vertical velocity anomaly at 500 hPa is
-0.62. However, the correlation between the positive (descending) omega velocity anomaly and
the negative specific humidity anomaly is -0.78. The drying of the upper troposphere is thus
directly linked to the enhanced subsidence resulting from rainfall/TPW assimilation. The changes
in humnidity at 400 hPa should represent an improvement in the UTH, which is not easy to
confirm due to the lack of reliable observations. However, we can infer from the clear-sky OLR
results in Table 5 that rainfal/TPW assimilation has a positive impact on the large-scale
circulation and the UTH in clear-sky regions. In the next section, we further investigate the
impact of rainfall/TPW assimilation on the UTH using radiance data from TOVS channels that

are sensitive to the upper-level moisture.

e. Impact on upper-tropospheric moisture and temperature inferred from TOVS radiances

TOVS brightness temperature observations are used to assess the impact of rainfall/ TPW
assimilation on GEOS moisture and temperature analyses. Synthetic TOVS brightness
temperatures were computed using GEOS temperature and humidity analyses and compared with
brightness temperatures derived from the clear and cloud-cleared infrared radiances from the
TOVS High-resolution Infrared Radiation Sounder 2 (HIRS2) and Microwave Sounding Unit
(MSU). The HIRS cloud-cleared brightness temperatures were produced as a part of the
Pathfinder Path A data set (Susskind et al. 1997). The procedure we used is described in Hou et
al. (2000a). The absolute uncertainty of the synthetic minus observed brightness temperatures is
estimated to be approximately 2 K, due to biases in observations and the radiative transfer model,
which were not removed. Instead, we focus on the spatial structure of the brightness temperature
residuals exceeding 2 K and the relative differences between the GEOS control and PCP+TPW

assimilation.
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In this section we examine results for 2 channels: The HIRS2 12 (6.7 pum), which is
sensitive to the UTH and the MSU 2, which is sensitive to the mid-tropospheric temperature.
HIRS?2 12 has a peak sensitivity to UTH between about 300 and 500 hPa depending on local
conditions. Figure 8 compares the synthetic HIRS2 12 and MSU 2 brightness temperatures with
observations. The synthetic HIRS12 brightness temperature from the GEOS control shows a cold
bias, reflecting a moist bias in UTH throughout the tropics. The difference in synthetic brightness
temperature in the bottom left panel shows that rainfall/TPW assimilation leads to “warming”
over much of the tropics and reductions of 6% in the bias and 11% in the error std dev w.r.t.
observations. The spatial correlation between the positive synthetic brightness temperature
anomaly and the negative specific humidity anomaly at 400 hPa (Fig. 7c) is -0.81. This is a result
of an improved vertical motion field associated with improved precipitation in the assimilation,
as shown earlier.

The MSU 2 has a relatively broad sensitivity to tropospheric temperature that peaks near
600 hPa and has a small sensitivity to surface emission. In Fig. 8 the top right panel shows that
the synthetic MSU 2 brightness temperatures in the GEOS control are higher than the observed
values, consistent with a warm bias in the temperature analysis. However, the differences may
not be significant since they are less than the estimated uncertainty of 2 K. We can to some
extent remove this ambiguity by examining the difference in synthetic brightness temperatures
between two assimilation runs. The bottom right panel in Fig. 8 shows that the impact of
rainfall/ TPW assimilation is to reduce the warm biases by 0.05 to 0.2 K over large portions of
the tropics, which is likely significant given the broad weighting function. Statistics show that
rainfall/TPW assimilation reduces the tropical-mean bias by 4% and the error std dev by 7%

w.r.t. the observed MSU 2 brightness temperatures.
6. Impact on Instantaneous Fields and Short-Range Forecasts
Forecast skills that result from an improved initial condition are used to assess the impact

of rainfall and TPW assimilation on the instantaneous prognostic fields (i.e., temperature, winds,

moisture, and surface pressure) in the GEOS analysis.
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a. 5-day ensemble forecast

We performed parallel ensemble forecasts initialized with GEOS analyses with and
without TMI and SSM/I data. Each ensemble consists of 12 independent samples of 5-day
forecasts with initial conditions 5 days apart taken from two months of assimilation. For forecast
verification, two analyses were used: (i) the operational analysis from the European Center for
Medium-Range Weather Forecasts (ECMWF) and (ii) the average of the GEOS control and
PCP+TPW analyses. Although the PCP+TPW analysis compares better with satellite observations
than the control, as shown in Sec. 5, using the average of two analyses for verification removes
biases associated with the initial conditions.

Figure 9a shows the rms error reductions in tropical 5-day forecasts of the 500 hPa
geopotential height. Forecasts initialized with the PCP+TPW analysis yields smaller rms errors
regardless which of the two verification analyses was used. Student’s t test confirms that the
forecast error reductions in the tropics are significant at the 99% level beyond 1 day in either
case. In the extratropics, there was no statistically significant impact on the 5-day forecast.

Rainfall and TPW assimilation also reduces errors in the divergent component of
horizontal winds in the tropics, as shown for the 200 hPa divergent meridional wind in Fig. 9b.
The improvements are significant at the 99% level within the first 2 days, as verified against the
ECMWF analysis. Figure 9c shows that rainfal /TPW assimilation also reduces the rms errors in
the OLR in the first 2 days, as verified against the CERES/TRMM data, indicative of improved

cloud fields, as discussed in Sec. 5.
b. Precipitation forecast

Figure 10 shows the impact of TMI and SSM/I rainfall/TPW assimilation on ensemble
tropical precipitation forecast. The ensemble consisted of 20 cases of 3-day forecasts with initial
conditions 3 days apart from the December 97 to January 98 period. Figure 10a shows that
rainfall/TPW assimilation improves spatial correlation of the precipitation forecast with the GEOS
PCP+TPW precipitation analysis. The greatest improvements occur within the first 24 hours,

where the correlation coefficients are increased from 0.45 in the control to the 0.9-0.6 range. This
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result is similar to what one obtains with physical initialization (Krisknamurti et al. 1994). The
forecast improvement diminishes with the lead time presumably because the influence of a better
initial condition is inherently limited by the growth of model errors. The improved spatial
correlations shown in Fig. 10a are statistically significant at the 99% level for 66 forecast hours.
By contrast, the reductions in the rms forecast errors shown in Fig. 10b are significant only
within the first 24 hours. Rainfall/TPW assimilation thus appears to be more effective in
improving the spatial patterns than the amplitudes of precipitation forecasts.

To investigate the local impact of rainfall/TPW assimilation, we examined the 6-hr
average "observation minus forecast” (O-F) residuals at model gridboxes where TMI or SSM/I
observations are available at both forecast verification times and the initial times from which
forecasts were made with prognostic fields that had been modified by rainfall/TPW assimilation
in the previous assimilation cycle. From the same 20 forecasts used for Fig. 10, we constructed
6-h O-F ensembles consisting of individual forecasts at those locations with improved initial
conditions rather than averaged over all points in the tropics. In Table 7 the 6-h O-F precipitation
forecast statistics for the first 45 hours show that forecasts from the PCP+TPW assimilation have
much smaller biases for lead times longer 3 hours. (Results significant at the 99% level are
italicized.) The lack of improvements in the first few hours is consistent with that rainfall/TPW
assimilation is effective in reducing systematic errors, as discussed Sec. 5c, in which case there
may be no detectable improvement in the initial period when the forecast errors are dominated
by uncorrelated errors, which decay with time. By contrast, the fractional reductions in the error
std dev, though significant, are marginally small. This is due in part to that the large std dev of
the sub-sampled ensembles based on the spatially-limited, time-varying satellite observations
available in a 6-h window. Nevertheless, it is significant that the forecasts are not degraded since
internally consistent use of observations dictates that the improved analysis should improve, or

at the very least, does not adversely affect forecast.

b. 6-hr observation minus forecast residuals

We computed the monthly-mean biases and error std dev’s of the 6-hr O-F residuals for

winds, geopotential height, and specific humidity averaged over tropical rawinsonde locations for
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the GEOS control and PCP+TPW runs. Statistical tests show that rainfall and TPW assimilation
affects mainly the O-F residuals for moisture but not the height or winds. Table 8 gives the
moisture O-F biases and std dev’s together with the “null hypothesis” probabilities that they are
the same in the two cases. Results indicate that PCP+TPW assimilation decreases the std dev’s
of the moisture O-F residual between 300 and 500 hPa at the 1% probability level. The only
significant change in bias occurs between 700 and 850 hPa, corresponding to a downward shift
of the zero-bias level in the PCP+TPW case. Overall, these O-F’s show that TMI+SSM/I
rainfall/TPW assimilation reduces the moisture O-F residuals with no adverse impact on other

fields, which is consistent with the TOVS brightness temperature results discussed in Sec. 5d.

7. Summary and discussion

This study shows that assimilating rainfall and TPW estimates derived from microwave
instruments is very effective in improving the hydrological cycle and atmospheric energetics in
the GEOS analysis - even with the limited observations available from a single TMI and 2 SSM/I
instruments. It demonstrates that the microwave-based rainfall estimates, at their current levels
of accuracy, are more reliable than model-based analyses, as substantiated using independent
metrics based on the CERES/TRMM TOA radiation measurements. Results show that
assimilating the 6-h averaged tropical TMI and SSM/I rainrates and TPW data reduces the state-
dependent, systematic errors in assimilated data products. In particular, rainfall assimilation
improves distributions of clouds and radiation in convective regions, as well as the latent heating
and the associated large-scale circulation in the tropics, while TPW assimilation reduces moisture
biases to improve the longwave radiation in clear-sky regions. An improved large-scale motion
field also improves the upper tropospheric humidity, which is verified by comparing GEOS
synthetic brightness temperatures for moisture-sensitive TOVS channels with observations.

Ensemble forecasts initialized with GEOS analyses with TMI and SSM/I rainfall and TPW
data yield better 5-day forecasts of the 500 hPa geopotential height, and better 2-day forecasts
of the 200 hPa divergent winds in the tropics. These forecast improvements indicate that
rainfalyTPW assimilation improves not only the time-mean fields but also the instantaneous

prognostic fields in the analysis. Rainfal/TPW assimilation also leads to improved 3-day
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ensemble forecasts of precipitation, with the greatest improvements occurring in the first 24
hours, during which time the spatial correlations with observation-driven precipitation analyses
increased from 0.45 in the control to the 0.9-0.6 range. This high correlation is not sustained
beyond 1 day presumably because that improvements due to improved initial conditions are
inherently limited by the growth of model errors. However, it is possible to achieve better results
beyond 1 day using the multi-model super-ensemble approach used by Krishnamurti et al. (2000)
to reduce the influence of systematic model errors. Examination of the 6-hr O-F statistics against
TMI and SSM/I observations show that rainfallyTPW assimilation reduces spatial biases by
roughly 50% in precipitation forecasts for lead times up to 3 days.

This work shows that assimilating TMI and SSM/I rainfall and TPW observations can
substantially improve assimilated data even in a sub-optimal application without detailed error
specifications. Tt may be possible to make even more effective use of these data through use of
background and observation error covariance models. The results of this study provide a baseline
for evaluating the performance of error covariance models. Rainfall/TPW assimilation
experiments using the generalized 1+1D rainfall/TPW assimilation scheme will be reported in a
subsequent paper.

While rainfall/TPW assimilation provides better initial conditions for short-range forecasts,
it is worth noting that the improvements are even greater in the monthly-mean fields. In the
presence of biases and other errors of the forecast model, forecast skills are not necessarily an
accurate predictor of the improvements that can be achieved in time-averaged assimilation fields.
These results suggest that assimilating rainfall and TPW data using the 1+1D scheme in the IAU
framework can compensate for the systematic errors present in the forecast model. The analysis
increments induced by rainfall and TPW data may be used to identify and correct the state-
dependent errors in the forecast model using the empirical procedure described in DelSole and
Hou (1999).

The present results are based on observations updated in 6-h assimilation cycles. The
state-of-the-art assimilation systems, including the next-generation GEOS DAS, are evolving
towards a time-continuous assimilation strategy to make better use of asynoptic observations from
satellite platforms. Currently global analyses from different assimilation systems all suffer, to

varying degrees, errors in clouds and precipitation in the tropics. This study suggests that
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precipitation and TPW assimilation offers an effective means by which to improve the
hydrological cycle and the related climate parameters in global analyses. Based on these results,
we expect‘that the proposed Global Precipitation Mission to measure rainfall at high temporal
and spatial resolution can provide a key observation type that will significantly improve the
quality and utility of assimilated global datasets for climate analysis and weather forecasting

applications.
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Table 1

Monthly-mean spatial statistics of GEOS tropical precipitation against GPCP satellite-gauge estimate

January 1998 June 1998
AC | bias (mm d") | std dev (mm d') | AC | bias (mmd"') | std dev (mm d")
GEOS Control 0.7 -0.1 - 3.24 - 0.6 0.75 - 3.67 -
PCP Assimilation 0.8 -0.47 * 2.24 -31% | 0.8 0 * 2.28 -38%
PCP+TPW Assim. | 0.9 -0.51 * 1.92 -41% | 09 -0.4 * 1.92 -48%

*See text for the apparent increase in bias.

Table 2

Monthly-mean spatial statistics of GEOS TPW over tropical oceans against Wentz estimate

January 1998 June 1998
AC | bias (g cm?) | std dev (g cm?) | AC | bias (g cm?) std dev (g cm?)
GEOS Control 0.9 -0.3 - 0.45 - 1 -0.3 - 0.36 -
PCP Assimilation 1 -0.2 -36% | 043 -4% 1 -0.2 -44% 0.43 -20%
PCP+TPW Assim. 1 0 97% | 0.09 -80% 1 0 -99% 0.091 -75%
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Table 3a

Monthly-mean spatial statistics of GEOS OLR against CERES/TRMM ERBE-like ES-4 estimate over
tropical locations where the monthly-mean rainfall has been modified by more than 1 mm d!

January 1998 June 1998
AC | bias (Wm?) std dev (Wm?) AC bias (Wm?) std dev (Wm™)
GEOS Control 0.5 -18 - 28.2 - 0.5 -24 - 304 -
PCP Assimilation 0.8 -5.6 -70% 16.3 42% 108 55 -18% 17.9 41%
PCP+TPW Assim. | 0.9 2 -83% 14.7 -48% 1038 182 | -92% 17.3 -43%
Table 3b

Monthly-mean spatial statistics of GEOS OSR against CERES/TRMM ERBE-like ES-4 estimate over
tropical locations where the monthly-mean rainfall has been modified by more than 1 mm d!

January 1998 Junc 1998
AC | bias (Wm?) std dev (Wm?) AC | bias (Wm?) std dev (Wm™)
GEOS Control 0.5 32 - 336 - 0.5 393 - 394 -
PCP Assimilation 0.8 189 | 41% | 202 -40% | 0.8 188 | -52% 227 -43%
PCP+TPW Assim. | 0.9 9.39 | -71% 19.5 42% | 08 9.19 | -77% 20.7 -48%
Table 3¢

Monthly-mean spatial statistics of GEOS total outgoing radiation against CERES/TRMM ERBE-like ES-4
estimate over tropical locations where the monthly-mean rainfall has been modified by more than 1 mm d?!

January 1998 June 1998
AC | bias (Wm?) | stddev (Wm? | AC | bias(Wm?) | std dev (Wm?)
GEOS Control 05 | 152 | - | 185 - los [ 151 | - | 209 -
PCP Assimilation | 0.6 | 13.7 | -10% | 163 | -12% |07 | 373 |-15% | 183 | -12%
PCP+TPW Assim. | 07 | 122 | 20% | 153 | -17% |o6 | 11 |-27% | 173 | -17%




Table 4a
Monthly-mean spatial statistics of GEOS tropical OLR against CERES/TRMM ERBE-like ES-4 estimate

January 1998 June 1998
AC | bias (Wm?) std dev (Wm?) AC bias (Wm%) std dev (Wm™)
GEOS Control 0.7 2.75 - 26.1 - 0.6 -2.72 - 28.7 -
PCP Assimilation 0.9 7.21 * 179 -31% 109 4,53 * 17.5 -39%
PCP+TPW Assim. | 0.9 10.8 * 145 -44% 109 7.84 * 15.1 41%

*See text for the apparent increase in bias.

Table 4b
Monthly-mean spatial statistics of GEOS tropical OSR against CERES/TRMM ERBE-like ES-4 estimate

January 1998 June 1998

AC bias (Wm?) std dev (Wm™) AC bias (Wm™) std dev (Wm?)

GEOS Control 0.7 16.1 - 32 - 0.6 19.9 - 36.6 -

PCP Assimilation 0.8 10.8 | -33% 239 -25% | 0.7 117 | -41% 254 -30%

PCP+TPW Assim. | 0.8 467 | -71% 22.5 -30% | 0.8 469 | -76% 22.3 -39%

Table 4c
Monthly-mean spatial statistics of GEOS tropical total outgoing radiation
against CERES/TRMM ERBE-like ES-4 estimate

January 1998 June 1998

AC | bias (Wm?) std dev (Wm?) AC bias (Wm?) std dev (Wm?)

GEOS Control 0.6 18.9 - 21.7 - 0.7 17.2 - 234 -

PCP Assimilation 0.7 18 4% 203 -1% 0.8 922 | -46% 212 -10%

PCP+TPW Assim. | 0.7 155 | -18% 19.3 -11% | 0.8 125 | -27% 19.4 -17%
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Table 5
Monthly-mean spatial statistics of GEOS clear-sky OLR over tropical oceans
against CERES/TRMM ERBE-like ES-4 estimate

January 1998 June 1998
AC | bias (Wm?) std dev (Wm?) AC bias (Wm™) std dev (Wm™)
GEOS Control 0.8 10.3 - 5.58 - 0.8 1.4 - 4.1 -
PCP Assimilation 0.8 9.56 -7% 5.45 2% 0.8 978 | -14% 422 +3%
PCP+TPW Assim. | 0.9 856 | -17% 4.66 -17% | 0.9 855 | -25% 3.06 -25%
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Table 6a

Monthly-mean spatial statistics of GEOS LW cloud forcing over tropical oceans
against CERES/TRMM ERBE-like ES-4 estimate

January 1998 June 1998
AC | bias (Wm?) std dev (Wm?) AC | bias (Wm?) std dev (Wm®)
GEOS Control 0.7 985 - 22.6 - 0.7 143 - 27.8 -
PCP Assimilation 0.9 54 -37% 143 -37% 1038 6.54 | -54% 153 -45%
PCP+TPW Assim. | 0.9 -0.6 -51% 11.1 -51% | 0.8 077 | -95% 12.8 -54%
Table 6b

Monthly-mean spatial statistics of GEOS SW cloud forcing over tropical oceans
against CERES/TRMM ERBE-like ES-4 estimate

January 1998 June 1998
AC | bias (Wm?) std dev (Wm?) AC | bias (Wm?) std dev (Wm?)
GEOS Control 04 | -28 - 38.2 - 03 |-322 - 42.6 -
PCP Assimilation |05 | -18 -36% 283 26% |05 |-19.6 |-39% 28.6 -33%
PCP+TPW Assim. | 0.6 | -1l -62% 258 32% |05 | -11.8 | -63% 24.6 -42%
Table 6¢

Monthly-mean spatial statistics of GEOS net cloud forcing over tropical oceans
against CERES/TRMM ERBE-like ES-4 estimate

January 1998 June 1998
AC | bias (Wm?) std dev (Wm?) AC bias (Wm?) std dev (Wm?)
GEOS Control 0.4 -16 - 24.5 - 0.4 -13.6 - 248 -
PCP Assimilation 0.5 -13 -19% | 229 -6% 0.4 -11.7 | -14% 239 -4%
PCP+TPW Assim. | 0.5 -9.2 -41% | 219 -11% {05 -7.12 | -48% 20.5 -17%
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for tropical precipitation forecasts verified against TMI+SSM/I observations

Table 7

Local impact of rainfall and TPW assimilation on 6-h O-F statistics

Forecast Time 3h 9h I5h 21h 27 h 33h 39h 45 h
Sample Size 42160 | 44762 | 42541 52870 42272 | 45266 | 42387 49920
bias
Control 0.535 0.882 0.758 1.304 1.210 1.450 1.184 1.356
PCP+TPW Assim. | 0.708 | 0485 | 0014 0.477 0.480 | 0.814 0.588 0.950
% change +32% | -45% | -98% -63% -60% -44% -50% -30%
t prob 0.07 1e” 43 1e't 5e”? Ie?? 4e” 1e?
error std dev
Control 14.45 15.34 15.02 16.32 13.69 15.02 14.87 14.85
PCP+TPW Assim. 13.35 15.16 14.90 16.13 13.39 14.76 14.63 14.76
% change -7.6% | -12% | -0.8% -1.2% -22% | -1.7% -1.6% -0.6%
F prob Ie'® 0.012 | 0.078 0.009 3¢ 2e? 0.001 0.180
Table 8

Specific humidity O-F residuals against rawinsonde data (30°S to 30°N, January 1998)

Pressure bias error std dev
(hPa) Control PCP+TPW t-test prob Control PCP+TPW F-test prob
300 -0.0840 -0.0771 0.2601 0.0817 0.0380 9.811 x 10°
400 -0.1566 -0.1196 0.0363 0.2243 0.1670 1571 x 10°
500 -0.1470 -0.1295 0.5081 0.3464 0.2795 3.342x 107
700 0.0332 -0.1905 7.462 x 10° 0.6870 0.6400 0.2368
850 0.5591 0.2568 4.492 x 10° 1.2777 1.1523 0.0945
1000 -0.9933 -0.8497 0.4078 1.3697 1.3949 0.8385
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Figure captions

Figure 1. (a) Six-hour averaged GPROF rainrates based on observations from the TMI and F13
and F14 SSM/I instruments at 0000 UTC on 23 January 1998. The satellite observation tracks
are shaded. The light shading denotes either no precipitation or rainrates less than 2 mm day™.
(b) Difference between GPROF rainrates and precipitation from the GEOS control sampled at
TMI and SSM/I observation locations. Shown at the top of the panel are tropical-mean spatial
statistics of the GEOS precipitation w.r.t. the TMI and SSM/I observations. (c) Same as (b) but
for the assimilation using TMI and SSM/I rainrates without TPW retrievals. The percentage error
reduction relative to the control is given in parentheses. (d) Same as (c) but for the assimilation

using TMI and SSM/I rainrates in conjunction with TPW data.

Figure 2. (a) Monthly-mean combined satellite-gauge GPCP precipitation estimate for January
1998. (b) Difference between the GPCP estimate and precipitation from the GEOS control, with
tropically-averaged spatial correlations and error statistics. (¢} Same as (b) but for the TMI+SSMI
PCP assimilation. The percentage chaﬁge in error std dev relative to the control is given in

parentheses. (d) Same as (c) but for the TMI+SSMI PCP+TPW assimilation.

Figure 3. OLR comparison against CERES/TRMM measurements at locations where precipitation
has been modified by more than 1 mm d" for January 1998. (a) Difference between the GEOS
control and CERES/TRMM, with tropical-mean spatial correlations and error statistics. (b) Same
as (a) but for TMI PCP assimilation. The percentage changes in bias and error std dev relative
to the control are given in parentheses. (c) Same as (b) but for the TMI+SSMI PCP assimilation.
(d) Same as (c) but for the TMI+SSMI PCP+TPW assimilation.

Figure 4. Impact of rainfall/ TPW assimilation on the monthly-mean tropical precipitation, TPW,
OLR, and OSR as verified against observations. for June 1998. Left panels show errors in the
GEOS control assimilation. Right panels show the corresponding errors in the TMI+SSM/I
rainfall and TPW assimilation. Percentage changes relative to errors in the control are given in

parentheses. See text for discussion of bias values accompanied by an asterisk.
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Figure 5. Improvements in the longwave “cloud radiative forcing” as verified against
CERES/TRMM observations for January and June 1998. Percentage reductions in the spatial bias

and error std dev relative to the control are given in parentheses.

Figure 6. Tropically-averaged error std dev in OLR as a function of averaging periods of 1, 5,

and 30 days for the first 30 days in January 1998.

Figure 7. (a) Change in precipitation between PCP+TPW assimilation and the control for January,
1998. Superimposed are the changes in the horizontal divergent wind vector at 200 hPa. (b)
Change in the omega velocity at 500 hPa. The anomaly correlation between this and changes in
precipitation shown in (a) is -0.89. (c) Changes specific humidity at 400 hPa. The anomaly

correlation between this and changes in 500 hPa omega velocity is -0.62.

Figure 8. Comparison of GEOS synthetic HIRS2 channel 12 and MSU channel 2 brightness
temperatures with observations for January, 1998. Percentage reductions in the spatial bias and

error std dev relative to the control are given in parentheses.

Figure 9. Impact of TMI+SSM/I rainfall and TPW assimilation on 5-day ensemble forecasts. (a)
Forecast rms error in tropical geopotential height at 500 hPa, as verified against the ECMWF
analysis and the GEOS TMI+SSMI PCP+TPW analysis. (b) Same as (a) except for the 200 hPa
divergent meridional wind verified against the ECMWF analysis. (c) Same as (b) except for the

OLR verified against the CERES/TRMM observations.
Figure 10. Impact of TMI+SSM/I rainfall and TPW assimilation on 3-day ensemble precipitation

forecasts. (a) Spatial correlation with tropical precipitation from the GEOS TMI+SSMI

PCP+TPW assimilation. (b) The corresponding rms error.
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Impact of Rainfall and TPW Assimilation on Precipitation
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OLR Improvements Associated with Rainfall Changes > 1 mm 4"
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GEOS Control Assimilation vs Observations
(June 1998)
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Changes in Precipitation, Large—Scale Motions, and Humidity
GEOS(TMI+SSMI PCP+TPW) Minus GEOS(CNTRL): Jonuary 1998
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